An Efficient Partitioning Oracle for Bounded-Treewidth Graphs
نویسندگان
چکیده
Partitioning oracles were introduced by Hassidim et al. (FOCS 2009) as a generic tool for constant-time algorithms. For any ε > 0, a partitioning oracle provides query access to a fixed partition of the input bounded-degree minor-free graph, in which every component has size poly(1/ε), and the number of edges removed is at most εn, where n is the number of vertices in the graph. However, the oracle of Hassidim et al. makes an exponential number of queries to the input graph to answer every query about the partition. In this paper, we construct an efficient partitioning oracle for graphs with constant treewidth. The oracle makes only O(poly(1/ε)) queries to the input graph to answer each query about the partition. Examples of bounded-treewidth graph classes include k-outerplanar graphs for fixed k, seriesparallel graphs, cactus graphs, and pseudoforests. Our oracle yields poly(1/ε)-time property testing algorithms for membership in these classes of graphs. Another application of the oracle is a poly(1/ε)-time algorithm that approximates the maximum matching size, the minimum vertex cover size, and the minimum dominating set size up to an additive εn in graphs with bounded treewidth. Finally, the oracle can be used to test in poly(1/ε) time whether the input bounded-treewidth graph is k-colorable or perfect.
منابع مشابه
Constant time algorithms in sparse graph model
We focus on constant-time algorithms for graph problems in bounded degree model. We introduce several techniques to design constant-time approximation algorithms for problems such as Vertex Cover, Maximum Matching, Maximum Weighted Matching, Maximum Independent Set and Set Cover. Some of our techniques can also be applied to design constant-time testers for minor-closed properties. In Chapter 1...
متن کاملBounded Arboricity to Determine the Local Structure of Sparse Graphs
A known approach of detecting dense subgraphs (communities) in large sparse graphs involves first computing the probability vectors for short random walks on the graph, and then using these probability vectors to detect the communities, see Latapy and Pons [2005]. In this paper we focus on the first part of such an approach i.e. the computation of the probability vectors for the random walks, a...
متن کاملPlanar Graphs and Partial k-Trees
It is well-known that many NP-hard problems can be solved efficiently on graphs of bounded treewidth. We begin by showing that Knuth’s results on nested satisfiability are easily derived from this fact since nested satisfiability graphs have treewidth at most three. Noting that nested satisfiability graphs have a particular form of planar drawing, we define a more general form of graph drawing ...
متن کاملAlgorithms for Graphs of (Locally) Bounded Treewidth
Many real-life problems can be modeled by graph-theoretic problems. These graph problems are usually NP-hard and hence there is no efficient algorithm for solving them, unless P= NP. One way to overcome this hardness is to solve the problems when restricted to special graphs. Trees are one kind of graph for which several NP-complete problems can be solved in polynomial time. Graphs of bounded t...
متن کاملFinding Hamiltonian Cycle in Graphs of Bounded Treewidth: Experimental Evaluation
The notion of treewidth, introduced by Robertson and Seymour in their seminal Graph Minors series, turned out to have tremendous impact on graph algorithmics. Many hard computational problems on graphs turn out to be efficiently solvable in graphs of bounded treewidth: graphs that can be sweeped with separators of bounded size. These efficient algorithms usually follow the dynamic programming p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011